An Introduction to Using
MATLAB as a Research Tool

Instructor: Dirk Colbry, Ph.D.

Institute for Cyber-Enabled Research
colbrydi@msu.edu

“Learning your first computer language is like
learning French poetry when you don’t know
French and you don’t know poetry.”

— Bill Punch, MSU Computer Science Professor

Agenda

Motivation
The MATLAB Interface
MALTAB Command Syntax

Programming with Scripts
— Loop statements and block code

Programming with Functions

Loading and saving data

Sub-Agenda

Where to find help with MATLAB
Getting data inside of MATLAB
Working with data in MATLAB
Visualizing data using MATLAB

Motivation and Background

What i1s MATLAB?

e (Mat)rix (Lab)oratory
— MATLAB is a high-level programming language and
interactive environment that enables you to perform
computationally intensive tasks faster than with
traditional programming languages such as C, C++, and
Fortran.

— This is accomplished by providing the user with
extensive libraries of commonly used built-in functions.
These functions allow users to focus on their research
goals and avoid getting overrun by many unnecessary
programming details.

Alternatives to MATLAB

e R e Python
e S-Plus e Java
e SAS o C++

e Mathematica e Many more...

Why use MATLAB?

* MATLAB is designed to make it quick and
easy to develop programs:

— Uses an interpretive language, instead of a
programming language that needs a compiler

— Has an extensive library of existing functions

— There are many existing resources online

Flo Ed yen Dt look Destop Mndow b
DESE&E & RAUS[E 08 =0

A Few ExamEles

‘‘‘‘‘‘

e Data Generation
* Data Analysis
e Data Visualization

)i 1 EEK

ot Tods Dositop Wrdow.Hob
«ame /w08 =

The MATLAB Interface

Navigating the Program

) MATLAB 7.7.0 (R2008b)
Fle Edt Debug Desktop Window Help

ddress of the Current Directory

=loix|
0G| % RE 9 o & B | @ | curentdrectony!] ciiwork J&a [=)
g HowtoAdd 2] What's New
wo e x| Workspace »02x
ER EEEL R =]
[patevodried | [name = [value

Current
Directory

Command Window

Workspace

Details

Select a file to view detals

KT —— 2l

Comman d History oo x

Bh%-- 12/13/11 12:36 PH —-%
Ls

1s
% = rand(z)

Command
History

4 start|Ready

G|

Interface Style

* You can drag and drop the different components
of the MATLAB interface to make the program
look and feel the way you want.

* You can use the 2 button in the upper right corner
of a component to “dock” a window or use the ~
button to undock a window.

* You can always go back to the default interface
arrangement by selecting Desktop—> Desktop
Layout—>Default from the MATLAB menu.

Using MATLAB as a calculator

e Try typing the following examples into the
MATLAB command window:

»10 + 20
» sqrt (99)
»r = 2
»C = 2%pi*r/t2
e What variables do you see in the
workspace?

MATLAB Variable Editor

e Set up a basic variable:
»X = 0;
* Double click on the variable in the
workspace.
— The Variable Editor window will pop up.

* Cut and paste values to and from the
Variable editor to Windows excel.

Variable Editor

Edt View Graphics Debug Deskiop Window Help

& % BE® o o | B 2| curentDirectory | CiProgram FlesMATLABTO4Wwork v
Shorteuts (2] Howto Add (2] What's New

Array Editor - ans 2 x

@ G| & 2B | S M- e st BmBE &0 e x

2 3 4 5 6 7 8 9 10

ﬂ 050279 043979 036031 028594 0014864 08952 051015 0199 002719 A
0.23114! 0.4235 0.34005° 0.54851 0.39413 0.28819! 0.94239 0.71396 0.67427' 0.79367
0608B4] 051551 031422 026177 050301 081673 033508 051521 09271 099923
048598 033395 036508 059734 (072198 0098548 04373 060507 034382 0.11024

0.8913 0.43291 039324 0.049278 0.30621 0.017363 0.47116) 0.9667 0.59449' 0.6226| —

07621 022895 059153 057108 0.11216 081939 014931 082212 061549 013257
045647] 057981 011975 070086 0.44329 062114 013586 031775 00033741 031003
0018504 076037 0038129 096229 (046676 056022 05325 05677 098201 013479
082141 0520982 04585 075052 0014869 024403 072579 01302 089951 022333
10| 04447 064053 08697 073999 066405 062201 03967 025435 069276 0.39655
» x |41 | 061543 020907, 093424 043187 (072405 026321 035842 080303 043965 013514
work Alll2] 079194 037982 026445 063427 028163 07533 020528 066785 070102 024108
~cd fMRI 13| 092181 078333 01603 080303 026182 065964 08664 0013626 060971 092752
load tlvolume || 14| 073821 068085 067286 0083881 070847 021406 062641 056158 029989 0.3911
S |hs oa7e27] 04811] 023788 094548 078386 060212 024117 045455 0.85604] 051126
copen brick2fe ||io' g1 0sere3 064583 091534 098516 060434 097808 090495 011207 0.0926%
open brik2fac ||w7| 0935470 079421 098683 060199 (047334 06595 06405 (028216 029156 0021699
open brik2fac |[1s| 09169 009183 066493 02535 090262 0.1833 020985 00GS034| 0.097A7 015953
facescan — pp ||19. 041027 06067 06703 0875 045106 0635 063134 04768 039745 084452
20| 08935 0050289 00099273 05134 080452 017031 066582 098371 033331 087915

=%-- 3/30/07 11: ||l2r| 0057891 041537 013701 073265 082886 05396 0134720 092235 094423 0.18699 v|

rand (100) o | .]

<100x100

<

|~

2
3
4
5
[
7
8
9

Current Directory | Workspace

< S 2 x

Command Line Navigation

The >> symbol is called the “command prompt.”

You can always double click on a command in the
command history and the computer will run that
line of code again.

You can also use the up and down arrows to
search though the command history.

If you type the first few letters of a command and
then use the up and down arrows, you will search
only for commands starting with those letters.

Text Editor

The editor is not in the workspace by default.

You can start it by typing “edit” on the
command line.

Separate text regions by using the “%%”
operator. (more about this later).

Language Syntax

Getting HELP!

From the command line type:

» help

» doc
If you do not know what a command does, type help
and then the command name:

» help plot

» doc datatypes
Do not be afraid to try the examples

— Copy and paste the example to the command line
Use the following commands to start over:

» close all; clear all; clc;

Doing a help Example

* Find a help message with an example:
» help avifile

* Copy the entire help message verbatim to the
command window

* See the file this example created:
» 1ls

MATLAB Central

http://www .mathworks.com/matlabcentral/

* File exchange with free MATLAB software
* Newsgroups and online help

Trendy

Connect the dots

Cody

Let the games begin

Now Available
R2013a

10

Center for Engineering
e e I Education Research
@ Michigan State University
» Resource developed as part of CSE 131
here at MSU

http://ceer.egr.msu.edu/matlab-resource

The MATLAB Interface
(everything is text)

Base expressions
Numbers, Strings, +, -, *, *~, /, etc...

Commands (functions and scripts)
help, plot, sqrt, rand, etc.
Variables

x, data, ans, cfc.

Comments

% Ignored text.

11

Basic Command Syntax

[outputl, output2, ..] = (inputl, input2, ..);

e Command name
— This is the name of the script or function.

— Both functions and scripts have command names,
however, scripts do not have inputs or outputs.

— The command name is normally the same name as the
file which defines the command.

— Typing “help <command name>" will cause the help
message for that command to appear.

— The command name is case sensitive, but MATLAB
will search for the closest match if the case sensitive
one is not found.

Command Name Examples

Example Commands:
» figure

» rand
» ls

Type ‘help’ and then the command names.

e Type ‘open’ and then a command name.

— Warning: you can edit commands that are open in the
editor. Be careful to not make or save any changes to
built-in MATLAB commands!

Try adding capital letters to commands:
» LS

» RAND

» Figure

12

[outputl, output2, ..] = commandkinputl, input2, ..);

* Inputs:

Basic Command Syntax

’

— Comma separated list in parentheses.

— A function is able to take different numbers of inputs and
may perform differently for different numbers of inputs.

— String inputs must be surrounded by single quotes.

— If the inputs are all strings, the parentheses, commas and
single quotes can be replace with white space.

* Note: in this special case, no outputs will be assigned.

— Note: scripts do not have inputs.

Input Examples

* Example commands with inputs:
» rand(2) ;

* Example of different behavior (overloading)

» linspace (0,2*pi)

» linspace(0,2*pi,10)

» Special case with strings as the only input
» 1Is('c:\")
» 1s c:\

» clear all

13

Basic Command Syntax

’[outputl, output2, ..] =‘ command (inputl, input2, .);

* Assignment and output
— Comma separated list of variables in brackets.

— A function may perform differently depending on the
number of outputs that are requested.

— If only one output is required, then the brackets and
commas are not needed.

— If the assignment and output variables are removed the
system will automatically assign outputl to ‘ans’,
the default output variable.

— Note: scripts do not have outputs.

Output Examples

* Example commands with outputs:
» x = rand([1,2])
» £ = figure
» im = imread('ngc6543a.jpg’)

» h = image (im) Get 1 x,y input coordinate
» [®x, y] = ginput(1) from the mouse.
(click on the figure)

* Using the default assignment
» rand (1)
» sqrt(26)

Note: if you are working with images consider the image processing

toolbox and the newer imshow command.

14

Basic Command Syntax

[outputl, output2, ..] = command(inputl, input2, m{]

* Display Output semicolon (Optional)
— If the semicolon is not included, then MATLAB will

automatically display the contents of the output
variables to the terminal display.

— If the semicolon is included, then the command will run
“quietly” and not output to the terminal display.

¢ Semicolon also ends a command

— Two commands can be placed on the same line of input

Semicolon Examples

* Display results

» x = linspace (0,2*pi)
* Do not display results

» x = linspace(0,2*pi) ;

¢ More than one command on a line
» y = sin(x); plot(x,y):

15

Overloading

e Functions can change what they do based on the type
and number of inputs and outputs.

» X linspace(1,100) ;
» y = rand([100 1]);

» ¥ sort(y) ; Same functif)n different
» plot(x,y); numbers of inputs and

different results.
» plot(x, y, '"*r’);

Naming Commands and
Variables

* There are special characters that cannot be used in
names, including:
<space>: \ * & + - ()[]1{} # S @etc...
e Names should be short and make sense
* Try not to reuse existing command and variable names

e Some good names include: = Some bad names include:

— beedata - sqgrt

- timedata - var

- videoplotfun -a, b, ¢, 4d, e,
— etc. — etc.

16

Project 1:

Fitting Polynomial Functions

* Use the following set of functions to input data,
display them in a figure and fit a polynomial to the
data. (Hint: use the help command.)

» figure
» axis
» ginput
» plot

» polyfit

» hold
» ezplot

PolyFit Example

100

80

B0

Fuls

20+

>> figure;
>> axis ([0
> [x y] =

Example Review

Function will wait until
you click on your figure 10
100 0 100]); times:

ginput(10) ;

>> plot(x,y,'dr'");
>> p = polyfit(x,y,1)

p=
0.8415

>> hold on;
>> ezplot('

Results will vary
depending on what points
6.6390 you clicked

0.8415*x + 6.6390', [0 100 O 100]);

>> hold off;

17

Text and Title Commands

* help title
* Sometimes you get strange results

» figure
» title('hello_world')

* This is because MATLAB uses a tex interpreter to display
mathematical functions

» xlabel ('2\pir*2');

* Most of the time you do not want to use the tex interpreter.
» ylabel ('time_seconds', 'Interpreter', 'none');

* If you want to learn how to use the tex interpreter, you can just Google
tex or latex and read about the math environment.

Nesting

[outputl, output2, ..] = command(command2 (), input2, ..);

* The outputl of one command can be the
input to another command.

— The value of the input will be the same as
outputl of the nested command.

— Nesting can continue as long as you like.

18

Example Nested Commands

e Here is an example of a non-nested
command:

»x = rand([100 1]);

»y = sort(x);

»plot(y) ;
* Or using nested commands:

»plot (sort (rand([100 1])));
* Note: there is only one semi-colon.

Matrixes Assignments

* Basic Scalar Assignment:
»x = 5
* Basic Vector Assignment:
»v = [1 2 3 7 8]
e Basic Matrix Assignment:
»m =[12 37 8; 52 45 3]

19

Matrix Multiplication

Inverse of a matrix
»x = [1 2; 3 4]
» inv (x)
Transpose of x
» x'
Matrix Multiplication
» X * inv(x)
Item by item Multiplication
» X .* inv(x)

Matrix Manipulation

Vertical Concatenation

»m2 = [v; v; m]

Horizontal Concatenation

»m3 = [v v m]

Accessing only the first row of a matrix
»x =m2(1,:)

Accessing only the first column of a matrix
»y =m2(:,1)

20

The : colon character

e It can be used to define a vector of numbers
»X =1:10
»Y = 1:2:20
» 2 = 20:-1:1
* It can also be used to index a matrix
» X = rand (10)
»x(1:2, 3:5)
»x(1:2,)

Data Types
(skipping)

21

Numeric
(integer, single, double, unit8, etc)

A double is the default numeric class in MATLAB

Numeric operators include:

(+ add) (- subtract) (* multiply) (/ divide) (A power)
The different numeric datatypes are needed to represent
different classes of numbers:

— Floating points

— Negative numbers

— Memory requirements
A double will be able to do most of what you want. It can
represent large floating point numbers with negative and
positive values.

Casting

Changing from one numerical type to
another

If you want to change from a floating point
to an integer

—round(5.6) or uint64(5.6)
If you want to change an integer to a double
you need to cast

— double (x)

Memory Storage

e Abitisaone (1) orazero (0)
* A byte is eight bits (a byte is the smallest amount
of data represented in MATLAB)
» Different datatypes have different sizes
» clear all
» d = double(10) ;
» ui8 = uint8(10) ;
» ui32 = uint32(10) ;
» ui6d = uint64(10) ;
» s = single (10) ;

Examples

* Integers are required to index a matrix
» X = rand(5);
» X(1,2)
» X(1.5,2.5)

* Color images are normally represented by a three
dimensional matrix (rows, columns, color) of uint8.

— In other words: three, two dimensional arrays representing red,
green and blue.

— Each item in this 3D matrix is traditionally represented by a
number from 0-255, which is an 8 bit binary number.

23

(Char)acter

¢ A char is a number between 0 and 65535.
— How many bits is this?

* Each number is mapped to a specific letter in the
alphabet; like a code.

* Different languages and fonts can have different
mappings.

* ASCII is a universal standard for mapping the
characters on a keyboard to one of the first 127
numbers.

ASCII — American Standard Code for
Information Interchange
Dec HxOct Char Dec Hx Oct Html Chr [Dec Hx Oct Html Chr| Dec Hx Oct Html Chr
0 0 000 NUL (null) 32 20 040 Space| 64 40 100 «#64; [96 60 140 `
1l 1 001 S0H (start of heading) 33 21 041 ! ! 65 41 101 A & 97 61 141 «#97; =a
2 2 002 5TX (start of text) 34 22 042 " 66 42 102 &«#66; B 98 62 142 b b
3 3 003 ETX (end of text) 35 23 043 &«#35; # 67 43 103 &«#67; C 99 63 143 &«#99; C
4 4 004 EOT (end of transmission) 36 24 044 &«#36; § 68 44 104 D D |100 64 144 &#l00; d
5 5 005 ENQ (encquiry) 37 25 045 % % 69 45 105 «#69; E (101 65 145 e e
6 6 006 ACK (acknowledge) 38 26 046 &«#38; &« 70 46 106 «#70; F (102 66 146 &#l02; £
7 7 007 BEL (bell) 39 27 047 ' ' 71 47 107 &«#71; G |103 67 147 g o
8 8 010 BS (backspace) 40 28 050 (| 72 48 110 &$72; H |104 68 150 «#l04; h
9 9 011 TAB (horizontal tab) 41 29 051 l:) 73 49 111 I I |105 69 151 i 1

10 A 012 LF (NL line feed, new line)| 42 24 052 «#42; * 74 44 112 &«#74:; 7 |106 64 152 j 71

11 B 013 VT (wvertical tab) 43 2B 053 + + 75 4B 113 K K |107 6B 153 k k

12 C 014 FF (NP form feed, new page)| 44 2C 054 , , 76 4C 114 &«#76; L [108 6C 154 l 1

13 D 015 CR (carriage return) 45 2D 055 - - 77 4D 115 M M |109 6D 155 m n

14 E 016 50 (shift out) 46 2E 056 . . 78 4E 116 N N |110 6E 156 &«#11l0; n

15 F 017 & {shift in) 47 2F 057 «#47; / 79 4F 117 O 0 |111 6F 157 &#lll:; o

16 10 020 (data link escape) 48 30 060 0 0 80 50 120 P P |112 70 160 l2; p

17 11 021 (device control 1) 49 31 061 1 1 81 51 121 Q 0 (113 71 161 q o

18 12 022 (dewice control 2) 50 32 062 &«#50; 2 82 52 122 &«#82: R (114 72 162 &«#11l4:; ©

19 13 023 DC3 (device control 3) 51 33 063 3 3 83 53 123 &«#83; 5 |115 73 163 s s

20 14 024 (device control 4) 52 34 064 4 4 84 54 124 «#84; T |116 74 164 &«#ll6; ©

21 15 025 (negative acknowledge) 53 35 065 &«#53; 5 85 55 125 &«#85; U (117 75 165 u u

22 16 026 ({synchronous idle) 54 36 066 6 6 86 56 126 &«#86; V |118 76 166 &#l1l8; v

23 17 027 (end of trans. block) 55 37 067 7 7 87 57 127 W W [119 77 167 w W

24 18 030 (cancel) 56 38 070 &«#56; & 88 58 130 X X (120 78 170 x x

25 19 031 ({end of medium) 57 39 071 &«#57. 9 89 59 131 Y ¥ (121 79 171 &«#l21:; ¥

26 1A 032 (substitute) 58 34 072 : : 90 5S4 132 Z Z (122 74 172 z z

27 1B 033 (escape) 59 3B 073 &«#59; ; 91 5B 133 [[(123 7B 173 { {

28 1C 034 (file separator) 60 3C 074 &«#60; < 92 5C 134 \ \ |124 7C 174 «#l24; |

29 1D 035 (group separator) 61 3D 075 &«#6l; = 93 5D 135]] [125 7D 175 } }

30 1E 036 (record separator) 62 3E 076 > > 94 SE 136 ^ ~ |126 7E 176 &#l26; ~

31 1F 037 US {unit separator) 63 3F 077 ? 2 95 SF 137 &«#95; _ |127 7F 177 DEL

Source: www.LookupTables.com

24

Understanding Characters

A string is just a * An integer from 0-255 can
vector of characters: be turned into a character:
»x = 'hello’ D, |

» X = char (x)

»y = 'world * Or you can change a

»x +y character back into its
» [x y] number:
» [' ' y] » x = 'Hello World';

» double (x) ;

Numbers and Character Paradox

Here is an odd example:
»x = '5'
» double (x) ;
Why does it print out 53 and not 5?
We could subtract 48 and get the number.

Or we can use a built in functions:
— str2double and num2str

25

String Compare - strcmp

* Compare two strings and return a boolean
» hl="hello'; h2="'world';

» hl==h2 % doesn’ t work

» sum(hl == h2) % doesn t work

» sum(~(hl == h2)) % doesn t work
» sum(~(hl == h2)) == 0 % works

» sum(~(hl == hl)) == 0 % works

* Or use strcmp, which is much easier

» stremp (hl, h2)
» stremp (hl, hl)

Why doesn’ t this work?

* List of strings

» x(1,:) = '"Hello everybody';

» x(2,:) = 'Ha Ha';

» x(3,:) = 'Thank you, come again';
» x(4,:) = 'Eat my shorts';

» x(5,:) 'Excellent’;

» Xx(6,:) = 'D'"'oh';

26

Cells (note {curly} brackets)

* List of strings

» x{1} =
» x{2} =
» x{3} =
» x{4} =
» x{8} =
» x{6} =

'Hello everybody';

'Ha Ha';

'Thank you, come again';
'Eat my shorts';
'Excellent'’';

IDI lohl;

Scalar = Vector 2 Matrix

e These are the most restrictive container
class, but also the most widely used.

— i.e., all of the components of the vector or
matrix much be of the same data type and size.

e Accessing a Vector or Matrix:

X(1,2) € returns the component of the first
row and the second column.

27

Cell = Cell Array

A Cell is a container for any type of object. A
Cell array allows you to make an array of objects
that vary in type or size.
Example cell array:

x = { '100' 100 10000 'hello world'}

Accessing a cell array:
x{1} < returns the contents of the first cell
x (1) < returns the first cell as a cell

Examples to try:
x{5} = 'bob';
x(5)

x{5}

Struct = Struct Array

A struct is a structure of data types in MATLAB. These structures are

also called objects.

Example struct:
>> X.bob
>> X.cat
>> X.hello

= 10;
= 20;
= 'Good day';

Example struct array:
>> d = dir

13x1 struct array with fields:
name
date
bytes
isdir

Accessing a struct array:
d.name < returns all of the names in the array.
d(4).name € only returns the name of the fourth struct.

28

Printing more complex output

» help sprintf
* There are special characters that can be used in a
formatted string:
— \t—tab
— \n — new line
— \— Y\’ backslash character
- '' —single quote

* Example:
» sprintf('Dirk''s email:\n\tdirk@colbry.com\n')

Programming With Scripts

29

Scripts
(The “Dark Side” of MATLAB programming)

* Scripts are “seductively” easy,
but will cause you a lot of
problems in the long run.

* Most of the time you want to
use a function instead.

e However, we will be using
scripts in our examples.

e Just remember, not to give
in to the “Dark Side”

Scripts

* Put all of your commands in a single text file (you
can use MATLAB’ s built-in editor).

e Name the file with the .m extension (filename.m).
* Type in the text file name to run the commands.

* Script do not have their own workspace. Instead,
they use the current workspace. (I will explain
this more when I talk about functions.)

30

Example Script

& C:\Documents and Settings\Dirk\My Documents\CurrentWork\Teaching\PSY992_F06\Mestscript.m
File Edt Text Cell Tools Debug Deskiop Window Help

DSHE s Boc G AF 80 BREBA s

1 $ This is a comment. The system will ignore anything with a comment.
2

3 % This is an example script program.

4 %

5 % This script plots some two dimensional data on the screen and then fits
6 % some curves to the data.

7|

8- [¥X,Y] = meshgrid(-3:.125:3);

9- Z = peaks(X,Y):

10 - meshc(X,Y,2):

11

12 $Extra commands that are commented out.
13 $hold on;

14 rf(X,Y,2);

15 thold off;

16

17

18 51

Crop Image Example

* A grayscale image is a matrix of values between 0
and 255.

im = imread('ngcé6543a.]jpg') ;
image (im) ;

im2 = im(70:530, 90:520, :)

image (im2) ;

~.

* Note: Images can get warped

— (type “axis off equal;” to see aclean image).

31

Block Code

13

if / else” Statement

* [f something is true do x,
otherwise, do something else.

X = input('Enter a number and then enter ');

if(x > 9)
% This code will only execute if x > 9
disp('Number is greater than 9');
else
% This code will only execute if x ~= 9
disp('Number is less than 9');

end

32

Truth Statements

» Relationship Operators ¢ Logical Operators

== - Equal & - logical AND
~= - Not equal I - logical OR
< -Less than ~ -logical NOT
> - Greater than

<= - Less than or equal

>= - Greater than or equal

“for” Statement

* Cycle though a vector one item at a time

figure;

hold on;

a = [0 100 O 100];

axis(a);

for i = 1:10
[x(1) y(i)] = ginput(l);
plot(x,y,"*");
axis(a);

end

33

Group Practice

Lets turn this into a script (hint: use num2str)
>> figure;
>> axis ([0 100 0 100]);
>> [x y] = ginput(10);
>> plot(x,y, 'dr');
>> p = polyfit(x,y,1)

p:
0.8415 6.6390
>> hold on;

>> ezplot('0.8415*x + 6.6390', [0 100 O 100]);
>> hold off;

Response time experiment

* Write a script that measures the response
time of a user.
* Qutline of the task:
— Describe research objective
— Flow chart the program
— Look up the necessary functions

— Write the program

Project 2:
Response time experiment

* Write a script that waits for a random amount of
time between 1 and 2 seconds and then asks for
user input (return key). Repeat 20 times.

for, end

rand
pause
tic, toc
beep
input Bl
Hist oL I W

« Display a histogram showing how Tong it took
between prompting the user and getting a
response.

“while” Statement

* Keep doing something while a statement is
true.

X = input('Type a number and then enter ') ;
while(x '= 9)
x = input('Type a number and then enter ');

end

35

Consecutive if statements

x = input('Type in a number and press <enter> ');
if(x == 1)
disp('one');
else
if(x == 2)
disp('two');
else
if(x == 3)
disp('three');
else
disp('more than three');
end
end
end

“switch / case’ Statement

* Simple way to display a series of if statements.

x = input('Type in a number and press <enter> ');
switch (x)
case (1)
disp('one');
case (2)
disp('two');
case (3)
disp('three');
otherwise
disp('more than three');
end

“try / catch” Statement

e Try to do a command, if there is
an error, address 1t and move on.

name = input('Type in an image file name with '' marks '):;
try
im = imread (name) ;
image (im) ;
catch
disp('could not open file');
end
disp('program did not exit');

Block code Review

if / else— Do the “if” block only if the statement is true. If the
statement is not true, do the “else” block.

for - Do block for a fixed number of times.
while - Keep doing a block while a statement stays true.

switch/case - Switch between blocks based on different
cases of a variable.

try/catch — Try ablock. If the block fails, catch the error and
do this other block.

end — The end of a Block.

37

Function Programming

Functions

* Functions take a set of inputs
and return a separate set of
outputs.

¢ Functions have their own
workspace.

— This makes naming variables
easier because different
workspaces can have the same
variable name.

38

Functions

* To change a script into a function the
following line needs to be the first line in
your file:

function [outputlist] = name (input list)

Example Function (functionList.m)

Output Function Name Input
Variable(s) (same as file) Variable(s)
- ——— | Function

function s = functionList (names) .
% Written by Dirk Colbry Declaration
%$ 09-12-06
% Display the descriptions of a set of MATLAB commands
‘ ’
Help
names = sort (names) ; Comment
for i = l:length(names)
try Block
h = help(names{i});
s = strfind(h,10); \
s - hilzs(l); Program
s = strtrim(s);
disp(s);
catch
disp([' Error - ' names{i} '']);
end
end

Fle Edt Debug Deskiop Window Hep
D& im0~ | KfB|?

GBS | M- s
Name Value Class.
fed ans “XCORR Cros... char
[Olnames <1x95 cell> cell
3258 8] double

<

Curtent Diractory | Workspace

Every function has its
own workspace

Shortcuts (7] Howto Add 2] What's New

1s

nanes = ans

1s

loadALLTXTfiles
names = ans

cle

1s

functionList (names) ;

JO®

Command Window » x

>> functionList (names);

When a function starts, its workspace
only contains the inputs to the
function (plus some special
variables).

When a function exits, only the
output variables are in the main
workspace.

Variables that are inside and outside
of the workspace are different,
regardless of the variable names.

For instance, if the variable ‘x’ is in
the main workspace and there is also
a variable named ‘x’ in my function
workspace, they can have different
values and it will not cause an error

< >

Scripts vs. Functions

* Why Scripts are bad:

— They share the same variable space (workspace) as the main
program.

— So, every time you need a new variable you have to make sure that
you did not use the same name in the past or it could cause
unwanted errors

* Why Functions are good:
— Each function has its own variable space.

— Functions make your code simple because any change you want to
make only needs to be made once.

— Functions help you organize your code.

40

Loading and Saving Data

File I/O

Saving and restarting MATLAB

* At any point you can save your MATLAB
session:

>> save (‘mysession’) ;

e Then you can exit MATLAB and reload
your session latter:

>> load(‘mysession’) ;

41

Types of files

Just like variables, every file is a group of
numbers.

The program needs to know what the
numbers mean in order to read the files.

Since the numbers could mean anything,
some standards have been adopted that
make reading the file easier.

There are generally two major classes of
files, ASCII and Binary.

All files are given a file ID

The fopen command opens a file and returns the
file ID.

Any command that can read or write to a file will
normally take the file ID as an input.

— fread, fwrite, fprintf, fgets, fgetl,
fscanf, fseek, etc.

After you are done accessing the file you should
always use the £fclose command.

42

fopen

¢ fid = fopen(filename, permissions)

* The permissions string can include:

- 'r' read

- 'w' write (create if necessary)

- 'a' append (create if necessary)

- 'r+' read and write (do not create)

- 'wt' truncate or create for read and write
- 'at' read and append (create if necessary)
- W' write without automatic flushing

- 'A' append without automatic flushing

Example Function

function showfile (filename)
%$SHOWFILE - display the contents of a file as ASCII

fid = fopen(filename, 'r');

while 1
tline = fgetl(fid);
if ~ischar(tline)
break
end
disp(tline)
end
fclose (fid) ;

43

Text (ASCII) files

e In a text file, the list of numbers is taken
from the ASCII table.

* Many programs can read text files
(Notepad, MATLAB, etc).
e Some common text formats are:
— Web pages (.html)
— MATLAB programs (.m)
— Text file (.txt)

Special ASCII files

e MATLAB can read any file. However, you
need to tell MATLAB what you want it to
mean.

— Line Delimited files
— Space Delimited files
— Comma Delimited files

44

Binary files

* Binary files are more compact than text files.
However, it is difficult to load binary files because
the format of the file is unknown.

* Some binary files follow a know standard. The file
extension tells the computer which standard is
being used:

— Image files (bmp, jpg, etc)
— Sound files (mp3, wav, au, etc)

— Proprietary formats (doc, pdf, mat, etc)

Specific I/O Commands

¢ General
— load / save

* ASCII
— csvread / csvwrite — comma separated data
— dlmread / dimwrite — ASCII delimitated data
— textscan — specialized format data
* Binary
— wklread / wklwrite — lotus notes spreadsheet file
— xlsread / xlswrite — excel files
— imread / imwrite — image files
— aviread / aviwrite — movie files

45

Solution to Group Practice

figure

axis ([0 100 0 100]);

[x y] = ginput(10);

plot(x,y, 'dr');

p = polyfit(x,y,1);

hold on;

equ_str=[num2str(p(l)) '*x + ' num2str(p(2))]:;
ezplot(equ_str, [0 100 0 100]);

hold off;

Solution to Project 2

for i = 1:20
pause (rand (1) *2) ;

tic;
x = input('press the (enter) key');
t(i) = toc;

end

hist(t);

46

