
1	

An Introduction to Using
MATLAB as a Research Tool	

	

Instructor: Dirk Colbry, Ph.D.	

Institute for Cyber-Enabled Research���
colbrydi@msu.edu	

	

	

“Learning your first computer language is like ���
learning French poetry when you don’t know ���

French and you don’t know poetry.” 	

– Bill Punch, MSU Computer Science Professor	

Agenda	

•  Motivation	

•  The MATLAB Interface	

•  MALTAB Command Syntax	

•  Programming with Scripts	

– Loop statements and block code	

•  Programming with Functions	

•  Loading and saving data	

2	

Sub-Agenda	

•  Where to find help with MATLAB 	

•  Getting data inside of MATLAB	

•  Working with data in MATLAB	

•  Visualizing data using MATLAB	

Motivation and Background	

3	

What is MATLAB?	

•  (Mat)rix (Lab)oratory	

–  MATLAB is a high-level programming language and
interactive environment that enables you to perform
computationally intensive tasks faster than with
traditional programming languages such as C, C++, and
Fortran.	

–  This is accomplished by providing the user with
extensive libraries of commonly used built-in functions.
These functions allow users to focus on their research
goals and avoid getting overrun by many unnecessary
programming details. 	

Alternatives to MATLAB	

• R	

•  S-Plus	

•  SAS	

• Mathematica	

•  Python	

•  Java	

• C++	

• Many more…	

4	

Why use MATLAB?	

•  MATLAB is designed to make it quick and
easy to develop programs: 	

– Uses an interpretive language, instead of a

programming language that needs a compiler	

– Has an extensive library of existing functions	

– There are many existing resources online	

A Few Examples	

•  Data Generation	

•  Data Analysis	

•  Data Visualization	

5	

The MATLAB Interface	

Navigating the Program	

Command	

History	

Current
Directory	

 Command Window	

Address of the Current Directory	

Workspace	

6	

Interface Style	

•  You can drag and drop the different components
of the MATLAB interface to make the program
look and feel the way you want. 	

•  You can use the button in the upper right corner
of a component to “dock” a window or use the
button to undock a window.	

•  You can always go back to the default interface
arrangement by selecting DesktopàDesktop
LayoutàDefault from the MATLAB menu. 	

Using MATLAB as a calculator	

•  Try typing the following examples into the
MATLAB command window:	

» 10 + 20
» sqrt(99)
» r = 2
» C = 2*pi*r^2

•  What variables do you see in the
workspace?	

7	

MATLAB Variable Editor	

•  Set up a basic variable:	

» X = 0;

•  Double click on the variable in the
workspace.	

– The Variable Editor window will pop up.	

•  Cut and paste values to and from the
Variable editor to Windows excel.	

Variable Editor	

8	

Command Line Navigation	

•  The >> symbol is called the “command prompt.”	

•  You can always double click on a command in the

command history and the computer will run that
line of code again.	

•  You can also use the up and down arrows to
search though the command history.	

•  If you type the first few letters of a command and
then use the up and down arrows, you will search
only for commands starting with those letters.	

Text Editor	

•  The editor is not in the workspace by default.	

•  You can start it by typing “edit” on the

command line.	

•  Separate text regions by using the “%%”

operator. (more about this later).	

9	

Language Syntax	

Getting HELP!	

•  From the command line type:	

»  help
»  doc

•  If you do not know what a command does, type help
and then the command name:	

»  help plot
»  doc datatypes

•  Do not be afraid to try the examples	

–  Copy and paste the example to the command line	

•  Use the following commands to start over:	

»  close all; clear all; clc;

10	

Doing a help Example	

•  Find a help message with an example:	

»  help avifile
•  Copy the entire help message verbatim to the

command window	

•  See the file this example created:	

»  ls

	

MATLAB Central ���
http://www.mathworks.com/matlabcentral/	

•  File exchange with free MATLAB software	

•  Newsgroups and online help	

11	

•  Resource developed as part of CSE 131
here at MSU	

	

http://ceer.egr.msu.edu/matlab-resource	

The MATLAB Interface���
(everything is text)	

•  Base expressions	

Numbers, Strings, +, -, *, ^, /, etc…	

•  Commands (functions and scripts)	

help, plot, sqrt, rand, etc. 	

•  Variables	

x, data, ans, etc.	

•  Comments	

% Ignored text.

12	

Basic Command Syntax	

•  Command name	

–  This is the name of the script or function.	

–  Both functions and scripts have command names,

however, scripts do not have inputs or outputs.	

–  The command name is normally the same name as the

file which defines the command.	

–  Typing “help <command name>” will cause the help

message for that command to appear.	

–  The command name is case sensitive, but MATLAB

will search for the closest match if the case sensitive
one is not found.	

[output1, output2, …] = command(input1, input2, …);

Command Name Examples	

•  Example Commands:	

»  figure
»  rand
»  ls

•  Type ‘help’ and then the command names.	

•  Type ‘open’ and then a command name.	

–  Warning: you can edit commands that are open in the
editor. Be careful to not make or save any changes to
built-in MATLAB commands! 	

•  Try adding capital letters to commands:	

»  LS
»  RAND
»  Figure	

13	

Basic Command Syntax	

•  Inputs:	

–  Comma separated list in parentheses.	

–  A function is able to take different numbers of inputs and

may perform differently for different numbers of inputs.	

–  String inputs must be surrounded by single quotes.	

–  If the inputs are all strings, the parentheses, commas and

single quotes can be replace with white space. 	

•  Note: in this special case, no outputs will be assigned. 	

–  Note: scripts do not have inputs.	

[output1, output2, …] = command(input1, input2, …);

Input Examples	

•  Example commands with inputs:

»  rand(2);
•  Example of different behavior (overloading)	

»  linspace(0,2*pi)
»  linspace(0,2*pi,10)

•  Special case with strings as the only input	

»  ls('c:\')
»  ls c:\
»  clear all

14	

Basic Command Syntax	

•  Assignment and output	

–  Comma separated list of variables in brackets.	

–  A function may perform differently depending on the

number of outputs that are requested.	

–  If only one output is required, then the brackets and

commas are not needed.	

–  If the assignment and output variables are removed the

system will automatically assign output1 to ‘ans’,
the default output variable.	

–  Note: scripts do not have outputs.	

[output1, output2, …] = command(input1, input2, …);

Output Examples	

•  Example commands with outputs:

»  x = rand([1,2])
»  f = figure
»  im = imread('ngc6543a.jpg’)
»  h = image(im)
»  [x, y] = ginput(1)

•  Using the default assignment	

»  rand(1)
»  sqrt(26)

Get 1 x,y input coordinate
from the mouse. 	

(click on the figure)	

Note: if you are working with images consider the image processing
toolbox and the newer imshow command.	

15	

Basic Command Syntax	

•  Display Output semicolon (Optional)	

–  If the semicolon is not included, then MATLAB will

automatically display the contents of the output
variables to the terminal display.	

–  If the semicolon is included, then the command will run
“quietly” and not output to the terminal display.	

•  Semicolon also ends a command	

–  Two commands can be placed on the same line of input	

[output1, output2, …] = command(input1, input2, …);

Semicolon Examples 	

•  Display results	

»  x = linspace(0,2*pi)

•  Do not display results	

»  x = linspace(0,2*pi);

•  More than one command on a line	

»  y = sin(x); plot(x,y);

16	

Overloading	

•  Functions can change what they do based on the type
and number of inputs and outputs.	

»  x = linspace(1,100);
»  y = rand([100 1]);
»  y = sort(y);
»  plot(x,y);
»  plot(x, y, '*r’);

Same function different
numbers of inputs and
different results.	

Naming Commands and
Variables	

•  There are special characters that cannot be used in
names, including:	

<space> : \ * & + - ()[]{} # % @ etc…	

•  Names should be short and make sense	

•  Try not to reuse existing command and variable names	

•  Some good names include:	

–  beedata
–  timedata
–  videoplotfun
–  etc.	

Some bad names include:
–  sqrt
–  var
–  a, b, c, d, e,
–  etc.

17	

Project 1:���
Fitting Polynomial Functions	

•  Use the following set of functions to input data,
display them in a figure and fit a polynomial to the
data. (Hint: use the help command.)
»  figure
»  axis
»  ginput
»  plot
»  polyfit
»  hold
»  ezplot

Example Review	

>> figure;
>> axis([0 100 0 100]);
>> [x y] = ginput(10);
>> plot(x,y,'dr');
>> p = polyfit(x,y,1)

p =

 0.8415 6.6390

>> hold on;
>> ezplot('0.8415*x + 6.6390', [0 100 0 100]);
>> hold off;

Function will wait until
you click on your figure 10
times:	

Results will vary
depending on what points
you clicked	

18	

Text and Title Commands	

•  help title
•  Sometimes you get strange results	

»  figure
»  title('hello_world')

•  This is because MATLAB uses a tex interpreter to display
mathematical functions	

»  xlabel('2\pir^2');

•  Most of the time you do not want to use the tex interpreter.	

»  ylabel('time_seconds', 'Interpreter', 'none');

•  If you want to learn how to use the tex interpreter, you can just Google
tex or latex and read about the math environment.

Nesting	

•  The output1 of one command can be the
input to another command.	

– The value of the input will be the same as

output1 of the nested command.	

– Nesting can continue as long as you like.	

	

[output1, output2, …] = command(command2(), input2, …);

19	

Example Nested Commands	

•  Here is an example of a non-nested
command:	

» x = rand([100 1]);
» y = sort(x);
» plot(y);

•  Or using nested commands:	

» plot(sort(rand([100 1])));

•  Note: there is only one semi-colon.	

Matrixes Assignments	

•  Basic Scalar Assignment:	

» x = 5

•  Basic Vector Assignment:	

» v = [1 2 3 7 8]

•  Basic Matrix Assignment:	

» m = [1 2 3 7 8; 5 2 4 5 3]

20	

Matrix Multiplication	

•  Inverse of a matrix 	

»  x = [1 2; 3 4]
»  inv(x)

•  Transpose of x	

»  x’

•  Matrix Multiplication	

»  x * inv(x)

•  Item by item Multiplication	

»  x .* inv(x) % notice the period

Matrix Manipulation	

•  Vertical Concatenation	

» m2 = [v; v; m]

•  Horizontal Concatenation	

» m3 = [v v m]

•  Accessing only the first row of a matrix	

» x = m2(1,:)

•  Accessing only the first column of a matrix	

» y = m2(:,1)	

21	

The : colon character	

•  It can be used to define a vector of numbers	

»  X = 1:10
»  Y = 1:2:20
»  Z = 20:-1:1

•  It can also be used to index a matrix	

»  x = rand(10)
»  x(1:2, 3:5)
»  x(1:2, :)

Data Types ���
(skipping)	

22	

Numeric ���
(integer, single, double, unit8, etc)	

•  A double is the default numeric class in MATLAB	

•  Numeric operators include:	

(+ add) (- subtract) (* multiply) (/ divide) (^ power)	

•  The different numeric datatypes are needed to represent

different classes of numbers:	

–  Floating points	

–  Negative numbers	

–  Memory requirements	

•  A double will be able to do most of what you want. It can
represent large floating point numbers with negative and
positive values. 	

Casting	

•  Changing from one numerical type to
another	

•  If you want to change from a floating point
to an integer	

– round(5.6) or uint64(5.6)

•  If you want to change an integer to a double
you need to cast	

– double(x)

23	

Memory Storage	

•  A bit is a one (1) or a zero (0)	

•  A byte is eight bits (a byte is the smallest amount

of data represented in MATLAB)	

•  Different datatypes have different sizes	

»  clear all
»  d = double(10);
»  ui8 = uint8(10);
»  ui32 = uint32(10);
»  ui64 = uint64(10);
»  s = single(10);

Examples	

•  Integers are required to index a matrix	

»  X = rand(5);
»  X(1,2)
»  X(1.5,2.5) %This causes an error

•  Color images are normally represented by a three
dimensional matrix (rows, columns, color) of uint8.	

–  In other words: three, two dimensional arrays representing red,

green and blue. 	

–  Each item in this 3D matrix is traditionally represented by a

number from 0-255, which is an 8 bit binary number.	

24	

(Char)acter	

•  A char is a number between 0 and 65535.	

–  How many bits is this?	

•  Each number is mapped to a specific letter in the

alphabet; like a code.	

•  Different languages and fonts can have different

mappings.	

•  ASCII is a universal standard for mapping the

characters on a keyboard to one of the first 127
numbers.	

ASCII – American Standard Code for
Information Interchange	

25	

Understanding Characters	

•  A string is just a
vector of characters:	

»  x = 'hello'
»  y = 'world'
»  x + y
»  [x y]
»  [x ' ' y]

•  An integer from 0-255 can
be turned into a character:	

»  x = [72 73];
»  x = char(x)

•  Or you can change a
character back into its
number:	

»  x = 'Hello World';
»  double(x);

Numbers and Character Paradox	

•  Here is an odd example:	

» x = '5'
» double(x);

•  Why does it print out 53 and not 5?	

•  We could subtract 48 and get the number.	

•  Or we can use a built in functions:	

– str2double and num2str

26	

String Compare - strcmp
•  Compare two strings and return a boolean	

»  h1='hello'; h2='world';
»  h1==h2 % doesn’t work
»  sum(h1 == h2) % doesn’t work
»  sum(~(h1 == h2)) % doesn’t work
»  sum(~(h1 == h2)) == 0 % works
»  sum(~(h1 == h1)) == 0 % works

•  Or use strcmp, which is much easier	

»  strcmp(h1, h2)
»  strcmp(h1, h1)

Why doesn’t this work?	

•  List of strings	

»  x(1,:) = 'Hello everybody';
»  x(2,:) = 'Ha Ha';
»  x(3,:) = 'Thank you, come again';
»  x(4,:) = 'Eat my shorts';
»  x(5,:) = 'Excellent';
»  x(6,:) = 'D''oh';

27	

Cells (note {curly} brackets)	

•  List of strings	

»  x{1} = 'Hello everybody';
»  x{2} = 'Ha Ha';
»  x{3} = 'Thank you, come again';
»  x{4} = 'Eat my shorts';
»  x{5} = 'Excellent';
»  x{6} = 'D''oh';	

Scalar à Vector à Matrix	

•  These are the most restrictive container
class, but also the most widely used.	

–  i.e., all of the components of the vector or

matrix much be of the same data type and size.	

•  Accessing a Vector or Matrix:	

X(1,2) ç returns the component of the first

row and the second column.	

28	

Cell à Cell Array	

•  A Cell is a container for any type of object. A

Cell array allows you to make an array of objects
that vary in type or size.	

•  Example cell array:	

x = { '100' 100 10000 'hello world'}

•  Accessing a cell array:	

	

 	

x{1} ß returns the contents of the first cell	

	

 	

x(1) ß returns the first cell as a cell	

•  Examples to try:	

x{5} = 'bob';
x(5)
x{5}	

Struct à Struct Array	

•  A struct is a structure of data types in MATLAB. These structures are

also called objects.	

•  Example struct:	

>> X.bob = 10;
>> X.cat = 20;
>> X.hello = 'Good day';

•  Example struct array:	

>> d = dir

13x1 struct array with fields:
 name
 date
 bytes
 isdir
	

•  Accessing a struct array:	

	

 	

d.name ß returns all of the names in the array.	

	

 	

d(4).name ß only returns the name of the fourth struct. 	

29	

Printing more complex output	

»  help sprintf
•  There are special characters that can be used in a

formatted string:	

–  \t – tab	

–  \n – new line	

–  \\ – ‘\’ backslash character	

–  '' – single quote	

•  Example:
»  sprintf('Dirk''s email:\n\tdirk@colbry.com\n')

Programming With Scripts	

30	

Scripts ���
 (The “Dark Side” of MATLAB programming)	

•  Scripts are “seductively” easy,
but will cause you a lot of
problems in the long run.	

•  Most of the time you want to
use a function instead.	

•  However, we will be using
scripts in our examples.	

•  Just remember, not to give
	

in to the “Dark Side”	

Scripts	

•  Put all of your commands in a single text file (you
can use MATLAB’s built-in editor).	

•  Name the file with the .m extension (filename.m).	

•  Type in the text file name to run the commands.	

•  Script do not have their own workspace. Instead,

they use the current workspace. (I will explain
this more when I talk about functions.)	

31	

Example Script	

Crop Image Example	

•  A grayscale image is a matrix of values between 0
and 255.	

im = imread('ngc6543a.jpg');
image(im);

im2 = im(70:530, 90:520, :);
image(im2);

•  Note: Images can get warped 	

–  (type “axis off equal;” to see a clean image).	

32	

Block Code	

“if / else” Statement	

•  If something is true do x, ���
otherwise, do something else.	

x = input('Enter a number and then enter ');
if(x > 9)
 % This code will only execute if x > 9

disp('Number is greater than 9');
else
 % This code will only execute if x ~= 9

disp('Number is less than 9');
end

33	

Truth Statements	

•  Relationship Operators	

== 	

- Equal	

~= 	

- Not equal	

< 	

 	

- Less than 	

> 	

 	

- Greater than	

<= 	

- Less than or equal	

>= 	

- Greater than or equal	

•  Logical Operators	

& 	

 	

- logical AND	

 | 	

 	

- logical OR	

~ - logical NOT	

	

“for” Statement	

•  Cycle though a vector one item at a time	

figure;
hold on;
a = [0 100 0 100];
axis(a);
for i = 1:10
 [x(i) y(i)] = ginput(1);

 plot(x,y,'*');
 axis(a);
end	

34	

Group Practice	

Lets turn this into a script (hint: use num2str)	

>> figure;
>> axis([0 100 0 100]);
>> [x y] = ginput(10);
>> plot(x,y,'dr');
>> p = polyfit(x,y,1)

p =

 0.8415 6.6390

>> hold on;
>> ezplot('0.8415*x + 6.6390', [0 100 0 100]);
>> hold off;

Response time experiment	

•  Write a script that measures the response
time of a user. 	

•  Outline of the task:	

– Describe research objective	

– Flow chart the program	

– Look up the necessary functions	

– Write the program	

35	

Project 2:���
Response time experiment	

•  Write a script that waits for a random amount of
time between 1 and 2 seconds and then asks for
user input (return key). Repeat 20 times. 	

for, end
rand
pause
tic, toc
beep
input
Hist

•  Display a histogram showing how long it took
between prompting the user and getting a
response.	

“while” Statement	

•  Keep doing something while a statement is
true.	

x = input('Type a number and then enter ');
while(x != 9)
 x = input('Type a number and then enter ');
end

36	

x = input('Type in a number and press <enter> ');
if(x == 1)
 disp('one');
else
 if(x == 2)
 disp('two');
 else
 if(x == 3)
 disp('three');
 else
 disp('more than three');
 end
 end
end

Consecutive if statements	

“switch / case” Statement	

•  Simple way to display a series of if statements.	

x = input('Type in a number and press <enter> ');
switch(x)
 case(1)
 disp('one');
 case(2)
 disp('two');
 case(3)
 disp('three');
 otherwise
 disp('more than three');
end

37	

“try / catch” Statement	

•  Try to do a command, if there is
an error, address it and move on.

name = input('Type in an image file name with '' marks ');
try
 im = imread(name);
 image(im);
catch
 disp('could not open file');
end
disp('program did not exit');

Block code Review	

•  if / else – Do the “if” block only if the statement is true. If the

statement is not true, do the “else” block.	

•  for – Do block for a fixed number of times.	

•  while – Keep doing a block while a statement stays true.	

•  switch/case – Switch between blocks based on different
cases of a variable.	

•  try/catch – Try a block. If the block fails, catch the error and
do this other block. 	

•  end – The end of a Block.	

38	

Function Programming	

Functions	

•  Functions take a set of inputs
and return a separate set of
outputs.	

•  Functions have their own
workspace.	

– This makes naming variables

easier because different
workspaces can have the same
variable name.	

	

39	

Functions	

•  To change a script into a function the
following line needs to be the first line in
your file:	

 function [outputlist] = name(input list)

Example Function (functionList.m)	

function s = functionList(names)
% Written by Dirk Colbry
% 09-12-06
% Display the descriptions of a set of MATLAB commands
%

names = sort(names);
for i = 1:length(names)
 try
 h = help(names{i});
 s = strfind(h,10);
 s = h(1:s(1));
 s = strtrim(s);
 disp(s);
 catch
 disp([' Error - ' names{i} '']);
 end
end

Function
Declaration

‘Help’
Comment

Block

Program

Output
Variable(s)

Function Name
(same as file)

Input
Variable(s)

40	

Every function has its ���
own workspace	

•  When a function starts, its workspace
only contains the inputs to the
function (plus some special
variables).	

•  When a function exits, only the
output variables are in the main
workspace.	

•  Variables that are inside and outside
of the workspace are different,
regardless of the variable names.	

•  For instance, if the variable ‘x’ is in
the main workspace and there is also
a variable named ‘x’ in my function
workspace, they can have different
values and it will not cause an error	

Scripts vs. Functions	

•  Why Scripts are bad:	

–  They share the same variable space (workspace) as the main
program. 	

–  So, every time you need a new variable you have to make sure that
you did not use the same name in the past or it could cause
unwanted errors	

•  Why Functions are good:	

–  Each function has its own variable space.	

–  Functions make your code simple because any change you want to

make only needs to be made once.	

–  Functions help you organize your code.	

41	

Loading and Saving Data	

File I/O	

Saving and restarting MATLAB	

•  At any point you can save your MATLAB
session:	

>> save(‘mysession’);

•  Then you can exit MATLAB and reload
your session latter:	

>> load(‘mysession’);

42	

Types of files	

•  Just like variables, every file is a group of

numbers.	

•  The program needs to know what the

numbers mean in order to read the files.	

•  Since the numbers could mean anything,

some standards have been adopted that
make reading the file easier.	

•  There are generally two major classes of
files, ASCII and Binary.	

All files are given a file ID	

•  The fopen command opens a file and returns the
file ID.	

•  Any command that can read or write to a file will
normally take the file ID as an input.	

–  fread, fwrite, fprintf, fgets, fgetl,
fscanf, fseek, etc.

•  After you are done accessing the file you should
always use the fclose command.	

43	

fopen	

•  fid = fopen(filename, permissions)
•  The permissions string can include:	

–  'r' read
–  'w' write (create if necessary)
–  'a' append (create if necessary)
–  'r+' read and write (do not create)
–  'w+' truncate or create for read and write
–  'a+' read and append (create if necessary)
–  'W' write without automatic flushing
–  'A' append without automatic flushing

Example Function	

function showfile(filename)
%SHOWFILE - display the contents of a file as ASCII

fid = fopen(filename, 'r');

while 1
 tline = fgetl(fid);
 if ~ischar(tline)
 break
 end
 disp(tline)
end
fclose(fid);

44	

Text (ASCII) files	

•  In a text file, the list of numbers is taken
from the ASCII table.	

•  Many programs can read text files
(Notepad, MATLAB, etc).	

•  Some common text formats are:	

– Web pages (.html)	

– MATLAB programs (.m)	

– Text file (.txt)	

Special ASCII files	

•  MATLAB can read any file. However, you
need to tell MATLAB what you want it to
mean.	

– Line Delimited files	

– Space Delimited files	

– Comma Delimited files	

45	

Binary files	

•  Binary files are more compact than text files.
However, it is difficult to load binary files because
the format of the file is unknown.	

•  Some binary files follow a know standard. The file
extension tells the computer which standard is
being used:	

–  Image files (bmp, jpg, etc)	

–  Sound files (mp3, wav, au, etc)	

–  Proprietary formats (doc, pdf, mat, etc)	

Specific I/O Commands	

•  General	

–  load / save	

•  ASCII	

–  csvread / csvwrite – comma separated data	

–  dlmread / dlmwrite – ASCII delimitated data	

–  textscan – specialized format data	

•  Binary	

–  wk1read / wk1write – lotus notes spreadsheet file	

–  xlsread / xlswrite – excel files	

–  imread / imwrite – image files 	

–  aviread / aviwrite – movie files	

46	

Solution to Group Practice	

figure
axis([0 100 0 100]);
[x y] = ginput(10);
plot(x,y, 'dr');
p = polyfit(x,y,1);
hold on;
equ_str=[num2str(p(1)) '*x + ' num2str(p(2))];
ezplot(equ_str, [0 100 0 100]);
hold off;

Solution to Project 2	

for i = 1:20
 pause(rand(1)*2);
 tic;
 x = input('press the (enter) key');
 t(i) = toc;
end
hist(t);

